Co-expression of thermophilic pectinases in a single host for cost-effective pectin bioconversion into D-galacturonic acid

Author:

Flores-Fernández Carol N.,Cárdenas-Fernández Max,Lye Gary J.,Ward John M.

Abstract

Co-expression of enzymes allow to produce multiple enzymes in a single host, representing a cost-effective alternative in biocatalytic processes which can be used for pectin bioconversion. Pectin-rich biomass is an abundant by-product from the fruit and sugar industries that is usually disposed in landfill or sold as a low value feedstock. The aim of this work was to co-express a thermophilic pectin methyl esterase (PME) and exo-polygalacturonases (exo-PGs) in a single host for pectin bioconversion into D-galacturonic acid (GalA) using different pectic substrates such as apple, citrus and sugar beet pectin. To achieve this, a PME from Bacillus licheniformis (BLI09) with either an exo-PG from Thermotoga maritima (TMA01) or from Bacillus licheniformis (BLI04) were cloned in pETDuet-1 and co-expressed in E. coli BL21 (DE3). Four co-expression plasmids containing both pectinases were constructed and factors such as the effect of the genes’ cloning order and their expression were evaluated. Co-expression constructs 3 and 4 (pETDuet-TMA01-BLI09 and pETDuet-BLI04-BLI09, respectively) showed better expression of both pectinases compared to co-expression constructs 1 and 2 (pETDuet-BLI09-TMA01 and pETDuet-BLI09-BLI04, respectively). Co-expression constructs 3 and 4 were the most efficient for pectin bioconversion into GalA reaching 3 and 2.5 mM GalA, respectively from apple and citrus pectin after 4 h reaction. In conclusion, this work demonstrates that the co-expression of pectinases can potentially contribute to reduce the cost associated to their production and purification as well as to increase their applicability for exploiting pectin-rich biomass to obtain bio-based chemicals.

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3