Experimental verification and comprehensive analysis of m7G methylation regulators in the subcluster classification of ischemic stroke

Author:

Tian Yunze,Yu Beibei,Lv Boqiang,Zhang Yongfeng,Fu Longhui,Yang Shijie,Li Jianzhong,Gong Shouping

Abstract

Background: Ischemic stroke (IS) is a fatal cerebrovascular disease involving several pathological mechanisms. Modification of 7-methylguanosine (m7G) has multiple regulatory functions. However, the expression pattern and mechanism of m7G in IS remain unknown. Herein, we aimed to explore the effect of m7G modification on IS.Methods: We screened significantly different m7G-regulated genes in Gene Expression Omnibus datasets, GSE58294 and GSE22255. The random forest (RF) algorithm was selected to identify key m7G-regulated genes that were subsequently validated using the middle cerebral artery occlusion (MCAO) model and quantitative polymerase chain reaction (qPCR). A risk model was subsequently generated using key m7G-regulated genes. Then, “ConsensusClusterPlus” package was used to distinguish different m7G clusters of patients with IS. Simultaneously, between two m7G clusters, differentially expressed genes (DEGs) and immune infiltration differences were also explored. Finally, we investigated functional enrichment and the mRNA–miRNA–transcription factor network of DEGs.Results: RF and qPCR confirmed that EIF3D, CYFIP2, NCBP2, DCPS, and NUDT1 were key m7G-related genes in IS that could accurately predict clinical risk (area under the curve = 0.967). NCBP2 was the most significantly associated gene with immune infiltration. Based on the expression profiles of these key m7G-related genes, the IS group could be divided into two clusters. According to the single-sample gene set enrichment analysis algorithm, four types of immune cells (immature dendritic cells, macrophages, natural killer T cells, and TH1 cells) were significantly different in the two m7G clusters. The functional enrichment of 282 DEGs between the two clusters was mainly concentrated in the “regulation of apoptotic signaling pathway,” “cellular response to DNA damage stimulus,” “adaptive immune system,” and “pyroptosis.” The miR-214–LTFFOXJ1 axis may be a key regulatory pathway for IS.Conclusion: Our findings suggest that EIF3D, CYFIP2, NCBP2, DCPS, and NUDT1 may serve as potential diagnostic biomarkers for IS and that the m7G clusters developed by these genes provide more evidence for the regulation of m7G in IS.

Funder

National Natural Science Foundation of China

Key Industry Innovation Chain of Shaanxi

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3