Transient Focal Ischemia Significantly Alters the m 6 A Epitranscriptomic Tagging of RNAs in the Brain

Author:

Chokkalla Anil K.12,Mehta Suresh L.1,Kim TaeHee1,Chelluboina Bharath1,Kim Jooyong1,Vemuganti Raghu123

Affiliation:

1. From the Department of Neurological Surgery (A.K.C., S.L.M., T.K., B.C., J.K., R.V.), University of Wisconsin, Madison

2. Department of Pathology and Laboratory Medicine, Cellular and Molecular Pathology Graduate Program (A.K.C., R.V.), University of Wisconsin, Madison

3. William S. Middleton Memorial Veteran Administration Hospital, Madison (R.V.).

Abstract

Background and Purpose— Adenosine in many types of RNAs can be converted to m 6 A (N 6 -methyladenosine) which is a highly dynamic epitranscriptomic modification that regulates RNA metabolism and function. Of all organs, the brain shows the highest abundance of m 6 A methylation of RNAs. As recent studies showed that m 6 A modification promotes cell survival after adverse conditions, we currently evaluated the effect of stroke on cerebral m 6 A methylation in mRNAs and lncRNAs. Methods— Adult C57BL/6J mice were subjected to transient middle cerebral artery occlusion. In the peri-infarct cortex, m 6 A levels were measured by dot blot analysis, and transcriptome-wide m 6 A changes were profiled using immunoprecipitated methylated RNAs with microarrays (44 122 mRNAs and 12 496 lncRNAs). Gene ontology analysis was conducted to understand the functional implications of m 6 A changes after stroke. Expression of m 6 A writers, readers, and erasers was also estimated in the ischemic brain. Results— Global m 6 A levels increased significantly at 12 hours and 24 hours of reperfusion compared with sham. While 139 transcripts (122 mRNAs and 17 lncRNAs) were hypermethylated, 8 transcripts (5 mRNAs and 3 lncRNAs) were hypomethylated (>5-fold compared with sham) in the ischemic brain at 12 hours reperfusion. Inflammation, apoptosis, and transcriptional regulation are the major biological processes modulated by the poststroke differentially m 6 A methylated mRNAs. The m 6 A writers were unaltered, but the m 6 A eraser (fat mass and obesity-associated protein) decreased significantly after stroke compared with sham. Conclusions— This is the first study to show that stroke alters the cerebral m 6 A epitranscriptome, which might have functional implications in poststroke pathophysiology. Visual Overview— An online visual overview is available for this article.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3