Author:
Cisneros Luis H.,Vaske Charles,Bussey Kimberly J.
Abstract
The clustering of mutations observed in cancer cells is reminiscent of the stress-induced mutagenesis (SIM) response in bacteria. Bacteria deploy SIM when faced with DNA double-strand breaks in the presence of conditions that elicit an SOS response. SIM employs DinB, the evolutionary precursor to human trans-lesion synthesis (TLS) error-prone polymerases, and results in mutations concentrated around DNA double-strand breaks with an abundance that decays with distance. We performed a quantitative study on single nucleotide variant calls for whole-genome sequencing data from 1950 tumors, non-inherited mutations from 129 normal samples, and acquired mutations in 3 cell line models of stress-induced adaptive mutation. We introduce statistical methods to identify mutational clusters, quantify their shapes and tease out the potential mechanism that produced them. Our results show that mutations in both normal and cancer samples are indeed clustered and have shapes indicative of SIM. Clusters in normal samples occur more often in the same genomic location across samples than in cancer suggesting loss of regulation over the mutational process during carcinogenesis. Additionally, the signatures of TLS contribute the most to mutational cluster formation in both patient samples as well as experimental models of SIM. Furthermore, a measure of cluster shape heterogeneity was associated with cancer patient survival with a hazard ratio of 5.744 (Cox Proportional Hazard Regression, 95% CI: 1.824–18.09). Our results support the conclusion that the ancient and evolutionary-conserved adaptive mutation response found in bacteria is a source of genomic instability in cancer. Biological adaptation through SIM might explain the ability of tumors to evolve in the face of strong selective pressures such as treatment and suggests that the conventional ‘hit it hard’ approaches to therapy could prove themselves counterproductive.
Funder
National Institutes of Health
Subject
Genetics (clinical),Genetics,Molecular Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献