DeepLION: Deep Multi-Instance Learning Improves the Prediction of Cancer-Associated T Cell Receptors for Accurate Cancer Detection

Author:

Xu Ying,Qian Xinyang,Zhang Xuanping,Lai Xin,Liu Yuqian,Wang Jiayin

Abstract

Recent studies highlight the potential of T cell receptor (TCR) repertoires in accurately detecting cancers via noninvasive sampling. Unfortunately, due to the complicated associations among cancer antigens and the possible induced T cell responses, currently, the practical strategy for identifying cancer-associated TCRs is the computational prediction based on TCR repertoire data. Several state-of-the-art methods were proposed in recent year or two; however, the prediction algorithms were still weakened by two major issues. To facilitate the computational processes, the algorithms prefer to decompose the original TCR sequences into length-fixed amino acid fragments, while the first dilemma comes as the lengths of cancer-associated motifs are suggested to be various. Moreover, the correlations among TCRs in the same repertoire should be further considered, which are often ignored by the existing methods. We here developed a deep multi-instance learning method, named DeepLION, to improve the prediction of cancer-associated TCRs by considering these issues. First, DeepLION introduced a deep learning framework with alternative convolution filters and 1-max pooling operations to handle the amino acid fragments with different lengths. Then, the multi-instance learning framework modeled the TCR correlations and assigned adjusted weights for each TCR sequence during the predicting process. To validate the performance of DeepLION, we conducted a series of experiments on several cohorts of patients from nine cancer types. Compared to the existing methods, DeepLION achieved, on most of the cohorts, higher prediction accuracies, sensitivities, specificities, and areas under the curve (AUCs), where the AUC reached notably 0.97 and 0.90 for thyroid and lung cancer cohorts, respectively. Thus, DeepLION may further support the detection of cancers from TCR repertoire data. DeepLION is publicly available on GitHub, at https://github.com/Bioinformatics7181/DeepLION, for academic usage only.

Funder

Natural Science Basic Research Program of Shaanxi Province

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3