DeepLION2: deep multi-instance contrastive learning framework enhancing the prediction of cancer-associated T cell receptors by attention strategy on motifs

Author:

Qian Xinyang,Yang Guang,Li Fan,Zhang Xuanping,Zhu Xiaoyan,Lai Xin,Xiao Xiao,Wang Tao,Wang Jiayin

Abstract

IntroductionT cell receptor (TCR) repertoires provide valuable insights into complex human diseases, including cancers. Recent advancements in immune sequencing technology have significantly improved our understanding of TCR repertoire. Some computational methods have been devised to identify cancer-associated TCRs and enable cancer detection using TCR sequencing data. However, the existing methods are often limited by their inadequate consideration of the correlations among TCRs within a repertoire, hindering the identification of crucial TCRs. Additionally, the sparsity of cancer-associated TCR distribution presents a challenge in accurate prediction.MethodsTo address these issues, we presented DeepLION2, an innovative deep multi-instance contrastive learning framework specifically designed to enhance cancer-associated TCR prediction. DeepLION2 leveraged content-based sparse self-attention, focusing on the top k related TCRs for each TCR, to effectively model inter-TCR correlations. Furthermore, it adopted a contrastive learning strategy for bootstrapping parameter updates of the attention matrix, preventing the model from fixating on non-cancer-associated TCRs.ResultsExtensive experimentation on diverse patient cohorts, encompassing over ten cancer types, demonstrated that DeepLION2 significantly outperformed current state-of-the-art methods in terms of accuracy, sensitivity, specificity, Matthews correlation coefficient, and area under the curve (AUC). Notably, DeepLION2 achieved impressive AUC values of 0.933, 0.880, and 0.763 on thyroid, lung, and gastrointestinal cancer cohorts, respectively. Furthermore, it effectively identified cancer-associated TCRs along with their key motifs, highlighting the amino acids that play a crucial role in TCR-peptide binding.ConclusionThese compelling results underscore DeepLION2's potential for enhancing cancer detection and facilitating personalized cancer immunotherapy. DeepLION2 is publicly available on GitHub, at https://github.com/Bioinformatics7181/DeepLION2, for academic use only.

Funder

Natural Science Basic Research Program of Shaanxi Province

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3