Enhancing Long-Read-Based Strain-Aware Metagenome Assembly

Author:

Luo Xiao,Kang Xiongbin,Schönhuth Alexander

Abstract

Microbial communities are usually highly diverse and often involve multiple strains from the participating species due to the rapid evolution of microorganisms. In such a complex microecosystem, different strains may show different biological functions. While reconstruction of individual genomes at the strain level is vital for accurately deciphering the composition of microbial communities, the problem has largely remained unresolved so far. Next-generation sequencing has been routinely used in metagenome assembly but there have been struggles to generate strain-specific genome sequences due to the short-read length. This explains why long-read sequencing technologies have recently provided unprecedented opportunities to carry out haplotype- or strain-resolved genome assembly. Here, we propose MetaBooster and MetaBooster-HiFi, as two pipelines for strain-aware metagenome assembly from PacBio CLR and Oxford Nanopore long-read sequencing data. Benchmarking experiments on both simulated and real sequencing data demonstrate that either the MetaBooster or the MetaBooster-HiFi pipeline drastically outperforms the state-of-the-art de novo metagenome assemblers, in terms of all relevant metagenome assembly criteria, involving genome fraction, contig length, and error rates.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Reference30 articles.

1. Strain-aware Assembly of Genomes from Mixed Samples Using Flow Variation Graphs;Baaijens;RECOMB,2020

2. Spades: a New Genome Assembly Algorithm and its Applications to Single-Cell Sequencing;Bankevich;J. Comput. Biol.,2012

3. High-quality Genome Sequences of Uncultured Microbes by Assembly of Read Clouds;Bishara;Nat. Biotechnol.,2018

4. Diversity of Shiga Toxin-Producing escherichia Coli (Stec) O26: H11 Strains Examined via Stx Subtypes and Insertion Sites of Stx and Espk Bacteriophages;Bonanno;Appl. Environ. Microbiol.,2015

5. Ehec o104: H4 in germany 2011: Large outbreak of bloody diarrhea and haemolytic uraemic syndrome by shiga toxin-producing e. coli via contaminated food;Burger,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3