Easing genomic surveillance: A comprehensive performance evaluation of long-read assemblers across multi-strain mixture data of HIV-1 and Other pathogenic viruses for constructing a user-friendly bioinformatic pipeline

Author:

Wattanasombat SaraORCID,Tongjai SiripongORCID

Abstract

Background Determining the appropriate computational requirements and software performance is essential for efficient genomic surveillance. The lack of standardized benchmarking complicates software selection, especially with limited resources. Methods We developed a containerized benchmarking pipeline to evaluate seven long-read assemblers—Canu, GoldRush, MetaFlye, Strainline, HaploDMF, iGDA, and RVHaplo—for viral haplotype reconstruction, using both simulated and experimental Oxford Nanopore sequencing data of HIV-1 and other viruses. Benchmarking was conducted on three computational systems to assess each assembler’s performance, utilizing QUAST and BLASTN for quality assessment. Results Our findings show that assembler choice significantly impacts assembly time, with CPU and memory usage having minimal effect. Assembler selection also influences the size of the contigs, with a minimum read length of 2,000 nucleotides required for quality assembly. A 4,000-nucleotide read length improves quality further. Canu was efficient among de novo assemblers but not suitable for multi-strain mixtures, while GoldRush produced only consensus assemblies. Strainline and MetaFlye were suitable for metagenomic sequencing data, with Strainline requiring high memory and MetaFlye operable on low-specification machines. Among reference-based assemblers, iGDA had high error rates, RVHaplo showed the best runtime and accuracy but became ineffective with similar sequences, and HaploDMF, utilizing machine learning, had fewer errors with a slightly longer runtime. Conclusions The HIV-64148 pipeline, containerized using Docker, facilitates easy deployment and offers flexibility to select from a range of assemblers to match computational systems or study requirements. This tool aids in genome assembly and provides valuable information on HIV-1 sequences, enhancing viral evolution monitoring and understanding.

Funder

The Faculty of Medicine Research Fund, Chiang Mai University,

The Health Systems Research Institute, Thailand

Publisher

F1000 Research Ltd

Reference81 articles.

1. Achieving the 95 95 95 targets for all: A pathway to ending AIDS.;L Frescura;PLoS One.,2022

2. Toward a global virus genomic surveillance network.;V Hill;Cell Host Microbe.,2023

3. Global genomic surveillance strategy for pathogens with pandemic and epidemic potential 2022–2032: progress report on the first year of implementation.,2023

4. HIV Whole-Genome Sequencing Now: Answering Still-Open Questions.;K Metzner;J. Clin. Microbiol.,2016

5. Portable Nanopore Sequencing for Viral Surveillance.;C Wittwer;Clin. Chem.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3