Gene-specific machine learning model to predict the pathogenicity of BRCA2 variants

Author:

Khandakji Mohannad N.,Mifsud Borbala

Abstract

Background: Existing BRCA2-specific variant pathogenicity prediction algorithms focus on the prediction of the functional impact of a subtype of variants alone. General variant effect predictors are applicable to all subtypes, but are trained on putative benign and pathogenic variants and do not account for gene-specific information, such as hotspots of pathogenic variants. Local, gene-specific information have been shown to aid variant pathogenicity prediction; therefore, our aim was to develop a BRCA2-specific machine learning model to predict pathogenicity of all types of BRCA2 variants.Methods: We developed an XGBoost-based machine learning model to predict pathogenicity of BRCA2 variants. The model utilizes general variant information such as position, frequency, and consequence for the canonical BRCA2 transcript, as well as deleteriousness prediction scores from several tools. We trained the model on 80% of the expert reviewed variants by the Evidence-Based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium and tested its performance on the remaining 20%, as well as on an independent set of variants of uncertain significance with experimentally determined functional scores.Results: The novel gene-specific model predicted the pathogenicity of ENIGMA BRCA2 variants with an accuracy of 99.9%. The model also performed excellently on predicting the functional consequence of the independent set of variants (accuracy was up to 91.3%).Conclusion: This new, gene-specific model is an accurate method for interpreting the pathogenicity of variants in the BRCA2 gene. It is a valuable addition for variant classification and can prioritize unreviewed variants for functional analysis or expert review.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3