BRCA1-specific machine learning model predicts variant pathogenicity with high accuracy

Author:

Khandakji Mohannad12,Habish Hind Hassan Ahmed3,Abdulla Nawal Bakheet Salem3,Kusasi Sitti Apsa Albani3,Abdou Nema Mahmoud Ghobashy3,Al-Mulla Hajer Mahmoud M. A.3,Al Sulaiman Reem Jawad A. A.3,Bu Jassoum Salha M.3,Mifsud Borbala14ORCID

Affiliation:

1. Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar

2. Hamad Dental Center, Hamad Medical Corporation, Doha, Qatar

3. National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar

4. William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom

Abstract

Identification of novel BRCA1 variants outpaces their clinical annotation which highlights the importance of developing accurate computational methods for risk assessment. Therefore our aim was to develop a BRCA1-specific machine learning model to predict the pathogenicity of all types of BRCA1 variants and to apply this model and our previous BRCA2-specific model to assess BRCA variants of uncertain significance (VUS) among Qatari patients with breast cancer. We developed an XGBoost model that utilizes variant information such as position frequency and consequence as well as prediction scores from numerous in silico tools. We trained and tested the model with BRCA1 variants that were reviewed and classified by the Evidence-Based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium. In addition we tested the model’s performance on an independent set of missense variants of uncertain significance with experimentally determined functional scores. The model performed excellently in predicting the pathogenicity of ENIGMA-classified variants (accuracy: 99.9%) and in predicting the functional consequence of the independent set of missense variants (accuracy: 93.4%). Moreover it predicted 2 115 potentially pathogenic variants among the 31 058 unreviewed BRCA1 variants in the BRCA exchange database. Using two BRCA-specific models we did not identify any pathogenic BRCA1 variants among those found in patients in Qatar but predicted four potentially pathogenic BRCA2 variants, which could be prioritized for functional validation.

Funder

Hamad Bin Khalifa University

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3