Genetic and Epigenetic Changes Are Rapid Responses of the Genome to the Newly Synthesized Autotetraploid Carassius auratus

Author:

Wang Chongqing,Zhou Yuwei,Qin Huan,Zhao Chun,Yang Li,Yu Tingting,Zhang Yuxin,Xu Tao,Qin Qinbo,Liu Shaojun

Abstract

Whole genome duplication events have occurred frequently during the course of vertebrate evolution. To better understand the influence of polyploidization on the fish genome, we herein used the autotetraploid Carassius auratus (4n = 200, RRRR) (4nRR) resulting from the whole genome duplication of Carassius auratus (2n = 100, RR) (RCC) to explore the genomic and epigenetic alterations after polyploidization. We subsequently performed analyses of full-length transcriptome dataset, amplified fragment length polymorphism (AFLP) and methylation sensitive amplification polymorphism (MSAP) on 4nRR and RCC. By matching the results of 4nRR and RCC isoforms with reference genome in full-length transcriptome dataset, 649 and 1,971 novel genes were found in the RCC and 4nRR full-length geneset, respectively. Compared to Carassius auratus and Megalobrama amblycephala, 4nRR presented 3,661 unexpressed genes and 2,743 expressed genes. Furthermore, GO enrichment analysis of expressed genes in 4nRR revealed that they were enriched in meiosis I, whereas KEGG enrichment analysis displayed that they were mainly enriched in proteasome. Using AFLP analysis, we noted that 32.61% of RCC fragments had disappeared, while 32.79% of new bands were uncovered in 4nRR. Concerning DNA methylation, 4nRR exhibited a lower level of global DNA methylation than RCC. Additionally, 60.31% of methylation patterns in 4nRR were altered compared to RCC. These observations indicated that transcriptome alterations, genomic changes and regulation of DNA methylation levels and patterns had occurred in the newly established autotetraploid genomes, suggesting that genetic and epigenetic alterations were influenced by autotetraploidization. In summary, this study provides valuable novel insights into vertebrate genome evolution and generates relevant information for fish breeding.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3