Repositioning Drugs to the Mitochondrial Fusion Protein 2 by Three-Tunnel Deep Neural Network for Alzheimer's Disease

Author:

Wang Xun,Zhong Yue,Ding Mao

Abstract

Alzheimer's disease (AD) is a common neurodegenerative dementia in the elderly. Although there is no effective drug to treat AD, proteins associated with AD have been discovered in related studies. One of the proteins is mitochondrial fusion protein 2 (Mfn2), and its regulation presumably be related to AD. However, there is no specific drug for Mfn2 regulation. In this study, a three-tunnel deep neural network (3-Tunnel DNN) model is constructed and trained on the extended Davis dataset. In the prediction of drug-target binding affinity values, the accuracy of the model is up to 88.82% and the loss value is 0.172. By ranking the binding affinity values of 1,063 approved drugs and small molecular compounds in the DrugBank database, the top 15 drug molecules are recommended by the 3-Tunnel DNN model. After removing molecular weight <200 and topical drugs, a total of 11 drug molecules are selected for literature mining. The results show that six drugs have effect on AD, which are reported in references. Meanwhile, molecular docking experiments are implemented on the 11 drugs. The results show that all of the 11 drug molecules could dock with Mfn2 successfully, and 5 of them have great binding effect.

Publisher

Frontiers Media SA

Subject

Genetics(clinical),Genetics,Molecular Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3