DEMLP: DeepWalk Embedding in MLP for miRNA-Disease Association Prediction

Author:

Wang Xun1ORCID,Wang Fuyu1,Wang Xinzeng2ORCID,Qiao Sibo1,Zhuang Yu1

Affiliation:

1. College of Computer Science and Technology, China University of Petroleum, Qingdao 266500, China

2. College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266500, China

Abstract

miRNAs significantly affect multifarious biological processes involving human disease. Biological experiments always need enormous financial support and time cost. Taking expense and difficulty into consideration, to predict the potential miRNA-disease associations, a lot of high-efficiency computational methods by computer have been developed, based on a network generated by miRNA-disease association dataset. However, there exist many challenges. Firstly, the association between miRNAs and diseases is intricate. These methods should consider the influence of the neighborhoods of each node from the network. Secondly, how to measure whether there is an association between two nodes of the network is also an important problem. In our study, we innovatively integrate graph node embedding with a multilayer perceptron and propose a method DEMLP. To begin with, we construct a miRNA-disease network by miRNA-disease adjacency matrix (MDA). Then, low-dimensional embedding representation vectors of nodes are learned from the miRNA-disease network by DeepWalk. Finally, we use these low-dimensional embedding representation vectors as input to train the multilayer perceptron. Experiments show that our proposed method that only utilized the miRNA–disease association information can effectively predict miRNA-disease associations. To evaluate the effectiveness of DEMLP in a miRNA-disease network from HMDD v3.2, we apply fivefold crossvalidation in our study. The ROC-AUC computed result value of DEMLP is 0.943, and the PR-AUC value of DEMLP is 0.937. Compared with other state-of-the-art methods, our method shows good performance using only the miRNA-disease interaction network.

Funder

China University of Petroleum, Beijing

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Reference73 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3