Author:
Zhao Jian,Li Haixia,Qu Jing,Zong Xizeng,Liu Yuchen,Kuang Zhejun,Wang Han
Abstract
DNA methylation indicates the individual’s aging, so-called Epigenetic clocks, which will improve the research and diagnosis of aging diseases by investigating the correlation between methylation loci and human aging. Although this discovery has inspired many researchers to develop traditional computational methods to quantify the correlation and predict the chronological age, the performance bottleneck delayed access to the practical application. Since artificial intelligence technology brought great opportunities in research, we proposed a perceptron model integrating a channel attention mechanism named PerSEClock. The model was trained on 24,516 CpG loci that can utilize the samples from all types of methylation identification platforms and tested on 15 independent datasets against seven methylation-based age prediction methods. PerSEClock demonstrated the ability to assign varying weights to different CpG loci. This feature allows the model to enhance the weight of age-related loci while reducing the weight of irrelevant loci. The method is free to use for academics at www.dnamclock.com/#/original.
Funder
Jilin Provincial Scientific and Technological Development Program
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献