Prediction of Multiple Degenerative Diseases Based on DNA Methylation in a Co-Physiology Mechanisms Perspective

Author:

Zhang Li1,Cai Ruirui2,Wang Chencai1,Liu Jialong1,Kuang Zhejun3ORCID,Wang Han2ORCID

Affiliation:

1. College of Computer Science and Engineering, Changchun University of Technology, Changchun 130051, China

2. School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun 130117, China

3. School of Cyber Security, School of Computer Science and Technology, Changchun University, Changchun 130022, China

Abstract

Degenerative diseases oftentimes occur within the continuous process of aging, and the corresponding clinical manifestations may be neurodegeneration, neoplastic diseases, or various human complex diseases. DNA methylation provides the opportunity to explore aging and degenerative diseases as epigenetic traits. It has already been applied to age prediction and disease diagnosis. It has been shown that various degenerative diseases share co-physiology mechanisms with each other, clues of which may be gained from studying the aging process. Here, we endeavor to predict the risk of degenerative diseases in an aging-relevant comorbid mechanism perspective. Firstly, an epigenetic clock method was implemented based on a multi-scale convolutional neural network, and a Shapley feature attribution analysis was applied to discover the aging-related CpG sites. Then, these sites were further screened to a smaller subset composed of 196 sites by using biomics analysis according to their biological functions and mechanisms. Finally, we constructed a multilayer perceptron (MLP)-based degenerative disease risk prediction model, Mlp-DDR, which was well trained and tested to accurately classify nine degenerative diseases. Recent studies also suggest that DNA methylation plays a significant role in conditions like osteoporosis and osteoarthritis, broadening the potential applications of our model. This approach significantly advances the ability to understand degenerative diseases and represents a substantial shift from traditional diagnostic methods. Despite the promising results, limitations regarding model complexity and dataset diversity suggest directions for future research, including the development of tissue-specific epigenetic clocks and the inclusion of a wider range of diseases.

Funder

National Natural Science Foundation of China

Jilin Scientific and Technological Development Program

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3