Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Protects Striatal Cells and Improves Motor Function in Huntington’s Disease Models: Role of PAC1 Receptor

Author:

Solés-Tarrés Irene,Cabezas-Llobet Núria,Lefranc Benjamin,Leprince Jérôme,Alberch Jordi,Vaudry David,Xifró Xavier

Abstract

Huntington’s disease (HD) is a hereditary neurodegenerative disorder caused by the expression of mutant huntingtin (mHtt). One of the main features of HD is the degeneration of the striatum that leads to motor discoordination. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that acts through three receptors named PAC1R, VPAC1R, and VPAC2R. In the present study, we first investigated the effect of PACAP on STHdhQ7/Q7 and STHdhQ111/Q111 cells that express wild-type Htt with 7 and mHtt with 111 glutamines, respectively. Then we explored the capacity of PACAP to rescue motor symptoms in the R6/1, a murine model of HD. We found that PACAP treatment (10–7 M) for 24 h protects STHdhQ111/Q111 cells from mHtt-induced apoptosis. This effect is associated with an increase in PAC1R transcription, phosphorylation of ERK and Akt, and an increase of intracellular c-fos, egr1, CBP, and BDNF protein content. Moreover, the use of pharmacological inhibitors revealed that activation of ERK and Akt mediates these antiapoptotic and neurotrophic effects of PACAP. To find out PAC1R implication, we treated STHdh cells with vasoactive intestinal peptide (VIP), which exhibits equal affinity for VPAC1R and VPAC2R, but lower affinity for PAC1R, in contrast to PACAP which has same affinity for the three receptors. VIP reduced cleaved caspase-3 protein level, without promoting the expression of c-fos, egr1, CBP, and the neurotrophin BDNF. We next measured the protein level of PACAP receptors in the striatum and cortex of R6/1 mice. We observed a specific reduction of PAC1R at the onset of motor symptoms. Importantly, the intranasal administration of PACAP to R6/1 animals restored the motor function and increased the striatal levels of PAC1R, CBP, and BDNF. In conclusion, PACAP exerts antiapoptotic and neurotrophic effects in striatal neurons mainly through PAC1R. This effect in HD striatum allows the recovery of motor function and point out PAC1R as a therapeutic target for treatment of HD.

Funder

Universitat de Girona

European Regional Development Fund

Université de Rouen

Institut National de la Santé et de la Recherche Médicale

Ministerio de Ciencia e Innovación

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3