Author:
Portnova-Fahreeva Alexandra A.,Rizzoglio Fabio,Mussa-Ivaldi Ferdinando A.,Rombokas Eric
Abstract
In the past, linear dimensionality-reduction techniques, such as Principal Component Analysis, have been used to simplify the myoelectric control of high-dimensional prosthetic hands. Nonetheless, their nonlinear counterparts, such as Autoencoders, have been shown to be more effective at compressing and reconstructing complex hand kinematics data. As a result, they have a potential of being a more accurate tool for prosthetic hand control. Here, we present a novel Autoencoder-based controller, in which the user is able to control a high-dimensional (17D) virtual hand via a low-dimensional (2D) space. We assess the efficacy of the controller via a validation experiment with four unimpaired participants. All the participants were able to significantly decrease the time it took for them to match a target gesture with a virtual hand to an average of 6.9s and three out of four participants significantly improved path efficiency. Our results suggest that the Autoencoder-based controller has the potential to be used to manipulate high-dimensional hand systems via a myoelectric interface with a higher accuracy than PCA; however, more exploration needs to be done on the most effective ways of learning such a controller.
Subject
Biomedical Engineering,Histology,Bioengineering,Biotechnology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献