Laccase-Driven Transformation of High Priority Pesticides Without Redox Mediators: Towards Bioremediation of Contaminated Wastewaters

Author:

Vaithyanathan Vasanth Kumar,Vaidyanathan Vinoth Kumar,Cabana Hubert

Abstract

In this study, Pleurotus dryinus was grown on municipal biosolids (BS) as the substrate to produce laccase for the removal of pesticides (fungicides, herbicides, and insecticides) from wastewater. Among the various types of BS tested, sterilized biosolids were the most promising substrate for laccase production by P. dryinus with a maximal laccase activity (162.1 ± 21.1 U/g dry substrate), followed by hygenized biosolids (96.7 ± 17.6 U/g dry substrate), unsterilized biosolids (UBS) (31.9 ± 1.2 U/g dry substrate), and alkali-treated biosolids (8.2 ± 0.4 U/g dry substrate). The ultrasound-assisted extraction of this enzyme from fermented UBS was carried out with 0.1 M phosphate buffer at pH 7.0, which increased the enzyme activity of the crude extract by 30%. To test the catalytic potential of the biocatalyst in real matrices, 1 U/ml of recovered crude laccase extract was applied for 24 h for the removal of 29 pesticides (nine fungicides, 10 herbicides, and 10 insecticides) either separately or as a mixture from spiked biologically treated wastewater effluent. When treated with crude enzyme extract, high-priority herbicides metolachlor and atrazine were completely removed, while 93%–97% of the insecticides aldicarb, spinosad, and azinphos-methyl and up to 91% of kresoxim-methyl were removed. Promising results were obtained with BS-derived crude enzyme extract exhibiting improved pesticides removal, which may be due to the mediator effect resulting from the catalytic transformation of other molecules in the cocktail. The results demonstrated a promising integrated bioprocess for the removal of pesticides in wastewater using crude laccase obtained from BS.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3