Dynamic Gesture Recognition Using Surface EMG Signals Based on Multi-Stream Residual Network

Author:

Yang Zhiwen,Jiang Du,Sun Ying,Tao Bo,Tong Xiliang,Jiang Guozhang,Xu Manman,Yun Juntong,Liu Ying,Chen Baojia,Kong Jianyi

Abstract

Gesture recognition technology is widely used in the flexible and precise control of manipulators in the assisted medical field. Our MResLSTM algorithm can effectively perform dynamic gesture recognition. The result of surface EMG signal decoding is applied to the controller, which can improve the fluency of artificial hand control. Much current gesture recognition research using sEMG has focused on static gestures. In addition, the accuracy of recognition depends on the extraction and selection of features. However, Static gesture research cannot meet the requirements of natural human-computer interaction and dexterous control of manipulators. Therefore, a multi-stream residual network (MResLSTM) is proposed for dynamic hand movement recognition. This study aims to improve the accuracy and stability of dynamic gesture recognition. Simultaneously, it can also advance the research on the smooth control of the Manipulator. We combine the residual model and the convolutional short-term memory model into a unified framework. The architecture extracts spatiotemporal features from two aspects: global and deep, and combines feature fusion to retain essential information. The strategy of pointwise group convolution and channel shuffle is used to reduce the number of network calculations. A dataset is constructed containing six dynamic gestures for model training. The experimental results show that on the same recognition model, the gesture recognition effect of fusion of sEMG signal and acceleration signal is better than that of only using sEMG signal. The proposed approach obtains competitive performance on our dataset with the recognition accuracies of 93.52%, achieving state-of-the-art performance with 89.65% precision on the Ninapro DB1 dataset. Our bionic calculation method is applied to the controller, which can realize the continuity of human-computer interaction and the flexibility of manipulator control.

Funder

National Natural Science Foundation of China

Hubei Provincial Department of Education

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3