Open Database for Accurate Upper-Limb Intent Detection Using Electromyography and Reliable Extreme Learning Machines

Author:

Cene ViniciusORCID,Tosin MauricioORCID,Machado Juliano,Balbinot Alexandre

Abstract

Surface Electromyography (sEMG) signal processing has a disruptive technology potential to enable a natural human interface with artificial limbs and assistive devices. However, this biosignal real-time control interface still presents several restrictions such as control limitations due to a lack of reliable signal prediction and standards for signal processing among research groups. Our paper aims to present and validate our sEMG database through the signal classification performed by the reliable forms of our Extreme Learning Machines (ELM) classifiers, used to maintain a more consistent signal classification. To perform the signal processing, we explore the use of a stochastic filter based on the Antonyan Vardan Transform (AVT) in combination with two variations of our Reliable classifiers (denoted R-ELM and R-Regularized ELM (RELM), respectively), to derive a reliability metric from the system, which autonomously selects the most reliable samples for the signal classification. To validate and compare our database and classifiers with related papers, we performed the classification of the whole of Databases 1, 2, and 6 (DB1, DB2, and DB6) of the NINAProdatabase. Our database presented consistent results, while the reliable forms of ELM classifiers matched or outperformed related papers, reaching average accuracies higher than 99 % for the IEEdatabase, while average accuracies of 75 . 1 % , 79 . 77 % , and 69 . 83 % were achieved for NINAPro DB1, DB2, and DB6, respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3