A specific H2/CO2 consumption molar ratio of 3 as a signature for the chain elongation of carboxylates from brewer’s spent grain acidogenesis

Author:

Henry Grégoire B. L.,Awedem Wobiwo Florent,Isenborghs Arnaud,Nicolay Thomas,Godin Bruno,Stenuit Benoit A.,Gerin Patrick A.

Abstract

Brewer’s spent grain (BSG) is an undervalorized organic feedstock residue composed of fermentable macromolecules, such as proteins, starch, and residual soluble carbohydrates. It also contains at least 50% (as dry weight) of lignocellulose. Methane-arrested anaerobic digestion is one of the promising microbial technologies to valorize such complex organic feedstock into value-added metabolic intermediates, such as ethanol, H2, and short-chain carboxylates (SCC). Under specific fermentation conditions, these intermediates can be microbially transformed into medium-chain carboxylates through a chain elongation pathway. Medium-chain carboxylates are of great interest as they can be used as bio-based pesticides, food additives, or components of drug formulations. They can also be easily upgraded by classical organic chemistry into bio-based fuels and chemicals. This study investigates the production potential of medium-chain carboxylates driven by a mixed microbial culture in the presence of BSG as an organic substrate. Because the conversion of complex organic feedstock to medium-chain carboxylates is limited by the electron donor content, we assessed the supplementation of H2 in the headspace to improve the chain elongation yield and increase the production of medium-chain carboxylates. The supply of CO2 as a carbon source was tested as well. The additions of H2 alone, CO2 alone, and both H2 and CO2 were compared. The exogenous supply of H2 alone allowed CO2 produced during acidogenesis to be consumed and nearly doubled the medium-chain carboxylate production yield. The exogenous supply of CO2 alone inhibited the whole fermentation. The supplementation of both H2 and CO2 allowed a second elongation phase when the organic feedstock was exhausted, which increased the medium-chain carboxylate production by 285% compared to the N2 reference condition. Carbon- and electron-equivalent balances, and the stoichiometric ratio of 3 observed for the consumed H2/CO2, suggest an H2- and CO2-driven second elongation phase, converting SCC to medium-chain carboxylates without an organic electron donor. The thermodynamic assessment confirmed the feasibility of such elongation.

Funder

Direction Générale Opérationnelle Agriculture, Ressources Naturelles et Environnement du Service Public de Wallonie

Innoviris

European Regional Development Fund

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3