Author:
Aguilera Suarez Sergio,Sekar Nadia Chandra,Nguyen Ngan,Lai Austin,Thurgood Peter,Zhou Ying,Needham Scott,Pirogova Elena,Khoshmanesh Khashayar,Baratchi Sara
Abstract
Here, we describe a motorized cam-driven system for the cyclic stretch of aortic endothelial cells. Our modular design allows for generating customized spatiotemporal stretch profiles by varying the profile and size of 3D printed cam and follower elements. The system is controllable, compact, inexpensive, and amenable for parallelization and long-term experiments. Experiments using human aortic endothelial cells show significant changes in the cytoskeletal structure and morphology of cells following exposure to 5 and 10% cyclic stretch over 9 and 16 h. The system provides upportunities for exploring the complex molecular and cellular processes governing the response of mechanosensitive cells under cyclic stretch.
Subject
Biomedical Engineering,Histology,Bioengineering,Biotechnology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献