Effects of Banana Resistant Starch on the Biochemical Indexes and Intestinal Flora of Obese Rats Induced by a High-Fat Diet and Their Correlation Analysis

Author:

Fu Jinfeng,Wang Yuting,Tan Simin,Wang Juan

Abstract

The effects of banana resistant starch (BRS) on obesity-related metabolic and intestinal flora were investigated in a high-fat diet-induced obesity model. After 6 weeks of intervention, the glucolipid metabolism index [blood glucose (GLU), total cholesterol (TC), triacylglycerol (TG), low density lipoprotein-cholesterol (LDL-C), and high density lipoprotein-cholesterol (HDL-C)], hormone index [leptin (LEP), insulin (INS), ghrelin, adiponectin (ADP), and thyroxine (T4)], and 16S rRNA sequencing analyses were performed for each group to explore the regulating effect of intestinal flora and the mechanism of weight loss in obese rats. The results showed that (1) BRS intervention significantly reduced the levels of GLU, TG, TC, LDL-C, LEP, and INS (p < 0.01) and increased the contents of ghrelin (p < 0.05) and ADP (p < 0.01). (2) BRS could improve the diversity of intestinal flora and regulate the overall structure of intestinal microorganisms, mainly by upregulating the Bacteroides/Firmicutes ratio and the relative abundance of Cyanobacteria and downregulating the relative abundances of Deferribacteres and Tenericutes (at the phylum level). BRS could inhibit the proliferation of Turicibacter, Romboutsia, and Oligella and increase the abundances of Bacteroides, Ruminococcaceae, and Lachnospiraceae (at the genus level). (3) Some significant correlations were observed between the gut microbiota and biomarkers. Turicibacter, Romboutsia, and Oligella were positively correlated with GLU, TG, TC, LEP, and INS and negatively correlated with ghrelin and ADP. Bacteroides, Parabacteroides, and Akkermansia were negatively correlated with GLU, TG, and TC. Conclusion: BRS had promising effects on weight loss, which could be associated with the improvement in host metabolism by regulating intestinal flora.

Funder

Natural Science Foundation of Guangdong Province

Fundamental Research Funds for the Central Universities

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Reference67 articles.

1. Phylotypes related to Ruminococcus bromii are abundant in the large bowel of humans and increase in response to a diet high in resistant starch.;Abell;FEMS Microbiol. Ecol.,2008

2. Effect of obesity, serum lipoproteins, and apolipoprotein E genotypes on mortality in hospitalized elderly patients.;Addante;Rejuvenation. Res.,2011

3. Prebiotic effects of a mixture of agavins and green banana flour in a mouse model of obesity.;Alvarado-Jasso;J. Funct. Foods,2020

4. Resistant Starch. Proceedings for the 2nd plenary meeting of EURESTA: European FLAIR Concerted Action No. 11 on physiological implications of the consumption of resistant starch in man.;Eur.J. Clin. Nutr.,1991

5. Microbes inside–from diversity to function: the case of Akkermansia.;Belzer;ISME J.,2012

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3