Single heartbeat ECG authentication: a 1D-CNN framework for robust and efficient human identification

Author:

Yuniarti Ana Rahma,Rizal Syamsul,Lim Ki Moo

Abstract

This study proposes a small one-dimensional convolutional neural network (1D-CNN) framework for individual authentication, considering the hypothesis that a single heartbeat as input is sufficient to create a robust system. A short segment between R to R of electrocardiogram (ECG) signals was chosen to generate single heartbeat samples by enforcing a rigid length thresholding procedure combined with an interpolation technique. Additionally, we explored the benefits of the synthetic minority oversampling technique (SMOTE) to tackle the imbalance in sample distribution among individuals. The proposed framework was evaluated individually and in a mixture of four public databases: MIT-BIH Normal Sinus Rhythm (NSRDB), MIT-BIH Arrhythmia (MIT-ARR), ECG-ID, and MIMIC-III which are available in the Physionet repository. The proposed framework demonstrated excellent performance, achieving a perfect score (100%) across all metrics (i.e., accuracy, precision, sensitivity, and F1-score) on individual NSRDB and MIT-ARR databases. Meanwhile, the performance remained high, reaching more than 99.6% on mixed datasets that contain larger populations and more diverse conditions. The impressive performance demonstrated in both small and large subject groups emphasizes the model’s scalability and potential for widespread implementation, particularly in security contexts where timely authentication is crucial. For future research, we need to examine the incorporation of multimodal biometric systems and extend the applicability of the framework to real-time environments and larger populations.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3