Using Convolutional Neural Network and a Single Heartbeat for ECG Biometric Recognition

Author:

AlDuwaile Dalal A.,Islam Md SaifulORCID

Abstract

The electrocardiogram (ECG) signal has become a popular biometric modality due to characteristics that make it suitable for developing reliable authentication systems. However, the long segment of signal required for recognition is still one of the limitations of existing ECG biometric recognition methods and affects its acceptability as a biometric modality. This paper investigates how a short segment of an ECG signal can be effectively used for biometric recognition, using deep-learning techniques. A small convolutional neural network (CNN) is designed to achieve better generalization capability by entropy enhancement of a short segment of a heartbeat signal. Additionally, it investigates how various blind and feature-dependent segments with different lengths affect the performance of the recognition system. Experiments were carried out on two databases for performance evaluation that included single and multisession records. In addition, a comparison was made between the performance of the proposed classifier and four well-known CNN models: GoogLeNet, ResNet, MobileNet and EfficientNet. Using a time–frequency domain representation of a short segment of an ECG signal around the R-peak, the proposed model achieved an accuracy of 99.90% for PTB, 98.20% for the ECG-ID mixed-session, and 94.18% for ECG-ID multisession datasets. Using the preprinted ResNet, we obtained 97.28% accuracy for 0.5-second segments around the R-peaks for ECG-ID multisession datasets, outperforming existing methods. It was found that the time–frequency domain representation of a short segment of an ECG signal can be feasible for biometric recognition by achieving better accuracy and acceptability of this modality.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3