Causative Classification of Ischemic Stroke by the Machine Learning Algorithm Random Forests

Author:

Wang Jianan,Gong Xiaoxian,Chen Hongfang,Zhong Wansi,Chen Yi,Zhou Ying,Zhang Wenhua,He Yaode,Lou Min

Abstract

BackgroundPrognosis, recurrence rate, and secondary prevention strategies differ by different etiologies in acute ischemic stroke. However, identifying its cause is challenging.ObjectiveThis study aimed to develop a model to identify the cause of stroke using machine learning (ML) methods and test its accuracy.MethodsWe retrospectively reviewed the data of patients who had determined etiology defined by the Trial of ORG 10172 in Acute Stroke Treatment (TOAST) from CASE-II (NCT04487340) to train and evaluate six ML models, namely, Random Forests (RF), Logistic Regression (LR), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbor (KNN), Ada Boosting, Gradient Boosting Machine (GBM), for the detection of cardioembolism (CE), large-artery atherosclerosis (LAA), and small-artery occlusion (SAO). Between October 2016 and April 2020, patients were enrolled consecutively for algorithm development (phase one). Between June 2020 and December 2020, patients were enrolled consecutively in a test set for algorithm test (phase two). Area under the curve (AUC), precision, recall, accuracy, and F1 score were calculated for the prediction model.ResultsFinally, a total of 18,209 patients were enrolled in phase one, including 13,590 patients (i.e., 6,089 CE, 4,539 LAA, and 2,962 SAO) in the model, and a total of 3,688 patients were enrolled in phase two, including 3,070 patients (i.e., 1,103 CE, 1,269 LAA, and 698 SAO) in the model. Among the six models, the best models were RF, XGBoost, and GBM, and we chose the RF model as our final model. Based on the test set, the AUC values of the RF model to predict CE, LAA, and SAO were 0.981 (95%CI, 0.978–0.986), 0.919 (95%CI, 0.911–0.928), and 0.918 (95%CI, 0.908–0.927), respectively. The most important items to identify CE, LAA, and SAO were atrial fibrillation and degree of stenosis of intracranial arteries.ConclusionThe proposed RF model could be a useful diagnostic tool to help neurologists categorize etiologies of stroke.Clinical Trial Registration[www.ClinicalTrials.gov], identifier [NCT01274117].

Funder

Science and Technology Department of Zhejiang Province

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Cognitive Neuroscience,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3