Using Laboratory Investigations to Aid the Identification of Small Aromatic Molecules in Water-Containing Astrophysical Ices

Author:

Salter Tara L.,Stubbing James W.,Brigham Lorna,Brown Wendy A.

Abstract

Monocyclic aromatic hydrocarbons such as benzene, toluene and xylene are thought to play an important role as precursors to the formation of polycyclic aromatic hydrocarbons (PAHs) and their methylated counterparts in a range of astrophysical environments. Benzene has been detected in two carbon rich objects and models have predicted that it could also be present in the interstellar medium (ISM). It has hence been speculated that small aromatic molecules are present in molecular clouds in the ISM, although they have not been detected to date. If they are present in the ISM, they are likely to exist in water-ice dominated icy mantles on the surface of dust grains.We present a laboratory study of benzene, toluene and two xylene isomers (ortho- and para-xylene) in the presence of water ice on a carbonaceous model dust grain surface (highly oriented pyrolytic graphite, HOPG). Temperature programmed desorption (TPD) shows how the desorption of the molecules is affected by the presence of water ice. The importance of these data for astrophysical situations is demonstrated by the use of TPD-derived kinetic parameters to generate a simple model of desorption in dense molecular clouds on an astrophysical timescale. Since benzene, toluene and xylene have not been detected in water-dominated icy mantles to date, desorption has been simulated in a range of different water-containing environments to show the different behaviour expected depending on ice composition. The simulations demonstrate how future observations of aromatic molecules in dense molecular clouds at known temperatures could reveal which environments the molecules are in. Data from these experiments are also used to predict the behaviour of other, larger, aromatic molecules such as PAHs. Reflection absorption infrared spectroscopy (RAIRS) is also used to record the infrared spectra of the small molecules in different water ice configurations. These spectra can be used to aid identification of these icy aromatics in future observations, such as those that will be possible with the James Webb Space Telescope (JWST). In all cases, spectra of mixed ices consisting of the aromatic molecule and amorphous water ice show evidence of interactions between the water ice and the aromatic species.

Funder

Science and Technology Facilities Council

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3