A selective up-sampling method applied upon unbalanced data for flare prediction: potential to improve model performance

Author:

Liu Siwei,Wang Jingjing,Li Ming,Cui Yanmei,Guo Juan,Shi Yurong,Luo Bingxian,Liu Siqing

Abstract

The Spaceweather HMI Active Region Patch (SHARP) parameters have been widely used to develop flare prediction models. The relatively small number of strong-flare events leads to an unbalanced dataset that prediction models can be sensitive to the unbalanced data and might lead to bias and limited performance. In this study, we adopted the logistic regression algorithm to develop a flare prediction model for the next 48 h based on the SHARP parameters. The model was trained with five different inputs. The first input was the original unbalanced dataset; the second and third inputs were obtained by using two widely used sampling methods from the original dataset, while the fourth input was the original dataset but accompanied by a weighted classifier. Based on the distribution properties of strong-flare occurrences related to SHARP parameters, we established a new selective up-sampling method and applied it to the mixed-up region (referred to as the confusing distribution areas consisting of both the strong-flare events and non-strong-flare events) to pick up the flare-related samples and add small random values to them and finally create a large number of flare-related samples that are very close to the ground truth. Thus, we obtained the fifth balanced dataset aiming to 1) promote the forecast capability in the mixed-up region and 2) increase the robustness of the model. We compared the model performance and found that the selective up-sampling method has potential to improve the model performance in strong-flare prediction with its F1 score reaching 0.5501 ± 0.1200, which is approximately 22% − 33% higher than other imbalance mitigation schemes.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3