Author:
Li Ming,Cui Yanmei,Luo Bingxian,Wang Jingjing,Wang Xin
Abstract
Solar flare forecasting is one of major components of operational space weather forecasting. Complex active regions (ARs) are the main source producing major flares, but only a few studies are carried out to establish flare forecasting models for these ARs. In this study, four deep learning models, called Complex Active Region Flare Forecasting Model (CARFFM)-1, −2, −3, and −4, are established. They take AR longitudinal magnetic fields, AR vector magnetic fields, AR longitudinal magnetic fields and the total unsigned magnetic flux in the neutral line region, AR vector magnetic fields and the total unsigned magnetic flux in the neutral region as input, respectively. These four models can predict the production of M-class or above flares in the complex ARs for the next 48 h. Through comparing the performance of the models, CARFFM-4 has the best forecasting ability, which has the most abundant input information. It is suggested that more valuable and rich input can improve the model performance.
Subject
Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献