Effect of fish density on biological production in aquaponics combining lettuce hydroponics and loach aquaculture for controlled ecological life support systems in space

Author:

Kitaya Yoshiaki,Kawamoto Takashige,Endo Ryosuke,Shibuya Toshio

Abstract

There is a need to develop production technology that effectively uses limited water and other resources to create a stable food supply in space. Aquaponics, which combine hydroponics and aquaculture, is expected to be an efficient system for producing crops and animal proteins. This system sustains the reuse of water and balances nutrient elements between both cultures using dissolved elements in fish excrement for plant growth. To evaluate the effect of fish density on biological production and nitrogen usage efficiency in aquaponics combining lettuce hydroponics and loach aquaculture, we investigated the growth performance of lettuce plants and loach fish. We focused on the balance of nutrient elements, especially nitrogen flow in the system. As a result, we found that lettuce grew in aquaponics with a half-strength standard solution with an optimal combination of the number of plants and fish as well as hydroponics with a standard solution. Increasing the density of loach fish and lettuce plants can increase the total biological production of fish and plants. However, it will be important to control both fish and plant densities to increase nitrogen recovery in aquaponics with a high fish density.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nutrient‐efficient catfish‐based aquaponics for producing lamb's lettuce at two light intensities;Journal of the Science of Food and Agriculture;2024-04-05

2. Sustainable Balance of Human Activities and Environmental Conservation in Urban Ecosystems;Plant Production for Sustainable Society as a Semi-closed Ecosystem;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3