Ensemble deep learning models for prediction and uncertainty quantification of ground magnetic perturbation

Author:

Siddique Talha,Mahmud Md Shaad

Abstract

Geomagnetically Induced Currents are one of the most hazardous effects caused by geomagnetic storms. In the past literature, the variations in ground magnetic fields over time, dB/dt were used as a proxy value for GIC. Machine Learning (ML) techniques have emerged as a preferred methodology to predict dB/dt. However, space weather data are highly dynamic in nature, and the data distribution is subject to change over time due to environmental variability. The ML models developed are prone to the uncertainty in the input data and therefore suffer from high variance. In addition, a part of an ML architecture performance is conditional on the variables used to model the system in focus. Therefore, a single algorithm may not generate the required accuracy for a given dataset. In this work, a Bayesian Ensemble ML model has been developed to predict the variations over time of the local ground magnetic horizontal component, dBH/dt. The Ensemble methodology combines multiple ML models in the prediction process to predict dBH/dt. Bayesian statistics allow the estimation of model parameters and output as probability distributions, where the variance quantifies the uncertainty. The input data consists of solar-wind data from OmniWeb for the years 2001–2010. The local ground horizontal magnetic components for the corresponding time were calculated using SuperMAG data for the Ottawa ground magnetometer station for the years mentioned above. The years 2011–2015 were selected for model testing, as it encompasses the 5 August 2011 and 17 March 2015 geomagnetic storms. Five different accuracy metrics were considered; namely, Root Mean Squared Error (RMSE), Probability of Detection (POD), Probability of False Detection (PFD), Proportion Correct (PC), and Heidke Skills Score (HSS). The parameter uncertainty of the models is quantified, and the mean predicted dBH/dt is generated with a 95% credible interval. It can be observed that different models perform better with different datasets and the ensemble model has an accuracy comparable to the models with a relatively strong performance.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3