Comparison of methods for modelling geomagnetically induced currents

Author:

Boteler D. H.,Pirjola R. J.

Abstract

Abstract. Assessing the geomagnetic hazard to power systems requires reliable modelling of the geomagnetically induced currents (GIC) produced in the power network. This paper compares the Nodal Admittance Matrix method with the Lehtinen–Pirjola method and shows them to be mathematically equivalent. GIC calculation using the Nodal Admittance Matrix method involves three steps: (1) using the voltage sources in the lines representing the induced geoelectric field to calculate equivalent current sources and summing these to obtain the nodal current sources, (2) performing the inversion of the admittance matrix and multiplying by the nodal current sources to obtain the nodal voltages, (3) using the nodal voltages to determine the currents in the lines and in the ground connections. In the Lehtinen–Pirjola method, steps 2 and 3 of the Nodal Admittance Matrix calculation are combined into one matrix expression. This involves inversion of a more complicated matrix but yields the currents to ground directly from the nodal current sources. To calculate GIC in multiple voltage levels of a power system, it is necessary to model the connections between voltage levels, not just the transmission lines and ground connections considered in traditional GIC modelling. Where GIC flow to ground through both the high-voltage and low-voltage windings of a transformer, they share a common path through the substation grounding resistance. This has been modelled previously by including non-zero, off-diagonal elements in the earthing impedance matrix of the Lehtinen–Pirjola method. However, this situation is more easily handled in both the Nodal Admittance Matrix method and the Lehtinen–Pirjola method by introducing a node at the neutral point.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3