The Current State and Future Directions of Modeling Thermosphere Density Enhancements During Extreme Magnetic Storms

Author:

Oliveira Denny M.,Zesta Eftyhia,Mehta Piyush M.,Licata Richard J.,Pilinski Marcin D.,Tobiska W. Kent,Hayakawa Hisashi

Abstract

Satellites, crewed spacecraft and stations in low-Earth orbit (LEO) are very sensitive to atmospheric drag. A satellite’s lifetime and orbital tracking become increasingly inaccurate or uncertain during magnetic storms. Given the planned increase of government and private satellite presence in LEO, the need for accurate density predictions for collision avoidance and lifetime optimization, particularly during extreme events, has become an urgent matter and requires comprehensive international collaboration. Additionally, long-term solar activity models and historical data suggest that solar activity will significantly increase in the following years and decades. In this article, we briefly summarize the main achievements in the research of thermosphere response to extreme magnetic storms occurring particularly after the launching of many satellites with state-of-the-art accelerometers from which high-accuracy density can be determined. We find that the performance of an empirical model with data assimilation is higher than its performance without data assimilation during all extreme storm phases. We discuss how forecasting models can be improved by looking into two directions: first, to the past, by adapting historical extreme storm datasets for density predictions, and second, to the future, by facilitating the assimilation of large-scale thermosphere data sets that will be collected in future events. Therefore, this topic is relevant to the scientific community, government agencies that operate satellites, and the private sector with assets operating in LEO.

Funder

Goddard Space Flight Center

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Reference80 articles.

1. Effects of the March 1989 Solar Activity;Allen;Eos Trans. AGU,1989

2. OneWeb Non-geostationary Satellite System: Technical Information to Supplement Schedule S.;Barnett,2016

3. Ten Ways to Apply Machine Learning in Earth and Space Sciences;Bortnik;Eos,2021

4. A 21st Century View of the March 1989 Magnetic Storm;Boteler;Space Weather,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3