Reduced Order Probabilistic Emulation for Physics‐Based Thermosphere Models

Author:

Licata Richard J.1ORCID,Mehta Piyush M.1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering West Virginia University Morgantown WV USA

Abstract

AbstractThe geospace environment is volatile and highly driven. Space weather has effects on Earth's magnetosphere that cause a dynamic and enigmatic response in the thermosphere, particularly on the evolution of neutral mass density. Many models exist that use space weather drivers to produce a density response, but these models are typically computationally expensive or inaccurate for certain space weather conditions. In response, this work aims to employ a probabilistic machine learning (ML) method to create an efficient surrogate for the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE‐GCM), a physics‐based thermosphere model. Our method leverages principal component analysis to reduce the dimensionality of TIE‐GCM and recurrent neural networks to model the dynamic behavior of the thermosphere much quicker than the numerical model. The newly developed reduced order probabilistic emulator (ROPE) uses Long‐Short Term Memory neural networks to perform time‐series forecasting in the reduced state and provide distributions for future density. We show that across the available data, TIE‐GCM ROPE has similar error to previous linear approaches while improving storm‐time modeling. We also conduct a satellite propagation study for the significant November 2003 storm which shows that TIE‐GCM ROPE can capture the position resulting from TIE‐GCM density with <5 km bias. Simultaneously, linear approaches provide point estimates that can result in biases of 7–18 km.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

Reference40 articles.

1. Bai S. Kolter J. Z. &Koltun V.(2018).An empirical evaluation of generic convolutional and recurrent networks for sequence modeling.https://doi.org/10.48550/arxiv.1803.01271

2. Thermosphere modeling capabilities assessment: geomagnetic storms

3. A three-dimensional general circulation model of the thermosphere

4. New Runge-Kutta algorithms for numerical simulation in dynamical astronomy

5. Pervasive Attention: 2

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3