The Highly Accurate Relation Between the Radius and Mass of the White Dwarf Star From Zero to Finite Temperature

Author:

Pei Ting-Hang

Abstract

In this research, first considering the electron–electron interaction in the high-density Fermi electron gas at T = 0 K, this interaction causes the pressure 2/137 time less than the original value. However, the pressure of the Fermi electron gas should have something to do with temperature. Then, we estimate the temperature effect using statistical mechanics and find that the complicated form of the pressure p depends on temperature at the given particle number N and volume V. According to this, the central density–mass (ρc-M), central density–radius (ρc-R), and mass–radius (M-R) relations of the white dwarf star are obtained by considering the equation of state (EOS). Traditional formula gives the problematic mass–radius relation RM1/3 for the low-density white dwarf stars because it leads to R→∞ and p→0 when M→0. We correct this relation and obtain two reasonable relations in the relativistic and nonrelativistic regions. In our EOS calculations, the central density is divided into the high-, middle-, and low-density regions. All three relations are almost unchanged until 108 K in the high-density region. The temperature effect mainly affects the middle- and low-density regions, and it becomes explicitly above 107 K. Our calculations can explain Sloan Digital Sky Survey observations where some white dwarf stars with a radius of more than 8 × 103 km have larger mass than the predictions by the relativistic EOS at T = 0 K. This result tells us that the temperature effect is important for the low and middle central-density white dwarf star and also useful to estimate the inner temperature of a white dwarf star.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3