Towards precise constraints in modified gravity: bounds on alternative coupling gravity using white dwarf mass-radius measurements

Author:

Danarianto M. D.,Sulaksono A.

Abstract

AbstractTests have to be performed to rule out proposals for gravity modification. We propose a new idea for constraining alternative theories of gravity using temperature-dependent white dwarf (WD) mass-radius (MR) observational data. We have shown that several alternatives to general relativity (GR), which modified GR only within matter, might be reduced to the well-known Poisson equation similar to that of Eddington-inspired Born Infeld (EiBI) and Minimal Exponential Measure (MEMe) gravity. Retaining EiBI notation, we constrain the value of the coupling constant, $$\kappa $$ κ , using a high-precision model-independent measurement of WD MR observations. We have demonstrated that the WD model should include detailed physics to achieve good precision. The model should include their temperature and evolutionary aspects, which may be computationally expensive. To overcome this issue, we construct a semi-analytical surrogate model based on Mestel’s model, calibrated with tabulated, detailed realistic models, to correct the zero-temperature radius. We have shown that the best-fit value of $$\kappa $$ κ depends on the WD model, with the ’thick’ envelope models more consistent in describing data. The tightest bound obtained from the most precise MR measurement, QS Vir, with $$-0.19$$ - 0.19 $$\lesssim \kappa \lesssim $$ κ 0.22 in $$10^3$$ 10 3 m$$^5$$ 5 kg$$^{-1}$$ - 1 s$$^{-2}$$ - 2 for $$2\sigma $$ 2 σ $$(\sim 95\%)$$ ( 95 % ) credibility. Overall, we assert that the recent precise WD MR measurements, combined with our current understanding of WD structure, are insufficient to see the deviation from the one predicted by GR. Both more precise observation data and detailed WD modelling are required to rule out gravity modification.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3