Experimental modeling of atmospheric discharge phenomena and charged dust particle interactions

Author:

Abdelaal Mohamad E.,Dokuchaev Igor. V.,Malinovskaya Elena A.,Klimov Stanislav I.,Dolnikov Genady G.,Zakharov Alexander V.

Abstract

The upper atmosphere, comprising the mesosphere and thermosphere, is intricately influenced by various atmospheric and magnetospheric impacts. Various atmospheric waves excited in the troposphere can propagate into the mesosphere-thermosphere (M-T) region, altering its dynamics. Additionally, large-scale disturbances in the middle atmosphere, such as sudden stratospheric warming and geomagnetic disturbances induced by solar activity, affect the upper atmosphere. To better understand these complex processes, observations from multiple platforms and instruments, along with modeling studies, are necessary. This study presents experimental investigations into the electromagnetic signatures generated by atmospheric discharge conditions, including breakdown events and interactions of charged dust particles. A vacuum chamber was used to simulate upper atmospheric conditions. An electromagnetic signal analyzer (EMA) registered signals generated from the atmospheric discharge and the electromagnetic signature of charged dust particles. The results of the experimental investigations revealed distinctive electromagnetic processes occurring during breakdown events and charged particle interactions within Earth’s atmosphere. Signals recorded by the electromagnetic signal analyzer provided valuable insights into the characteristics of atmospheric discharge conditions and the behavior of charged dust particles. The findings contribute to our understanding of the complex interactions in the upper atmosphere. Further analysis of the results highlights the significance of the atmospheric discharge, electromagnetic processes, and dust particle interactions in shaping the dynamics of this region. The experimental approach presented in this study offers a valuable tool for studying atmospheric processes and their implications for space weather dynamics.

Publisher

Frontiers Media SA

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3