Independent and joint associations between urinary polycyclic aromatic hydrocarbon metabolites and cognitive function in older adults in the United States

Author:

Lu Xin,Zhou Yanan,Miao Qingshan,Han Xuexue,Zhou Yi,Zhao Gaofeng,Yu Hao,Chen Min

Abstract

BackgroundPolycyclic aromatic hydrocarbons (PAHs), as organic pollutants widely present in daily environments, have been shown by existing epidemiological studies to be significantly associated with deficits in learning and memory functions in children and adults. However, the association between exposure to PAHs and cognitive function in older adults remains unclear. Additionally, existing related studies have only assessed the association between individual PAH exposures and cognitive assessments, overlooking the risks posed by mixed exposures. This study aims to use three statistical models to investigate the individual and overall effects of mixed PAH exposures on the cognition of older adults in the United States.MethodsThe study cohort was obtained from the NHANES database, which included individuals aged 60 and older from 2011 to 2014. Weighted generalized linear models (GLM), weighted quantile sum (WQS) models, and Bayesian kernel machine regression (BKMR) models were utilized to evaluate the connections between urinary PAH metabolites and the standardized Z-scores of four cognitive tests: Immediate Recall Test (IRT), Delayed Recall Test (DRT), Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST).ResultsOur analysis involved 899 individuals aged 60 and above. In the fully adjusted GLM, 2-hydroxynaphthalene (2-OHNa), 3-hydroxyfluorene (3-OHFlu), and 2-hydroxyfluorene (2-OHFlu) demonstrated negative associations with DSST Z-scores. In the WQS model, six urinary PAH metabolites were negatively linked to AFT Z-scores (β (95% confidence intervals [CI]): −0.120 (−0.208, −0.033), p = 0.007) and DSST Z-scores (β (95% CI): −0.182 (−0.262, −0.103), p < 0.001). In both assessments, 2-OHNa exerted the greatest influence among the urinary PAH metabolites. In the BKMR model, there was an overall negative correlation between urinary PAH metabolites and AFT and DSST Z-scores when the concentration was within the 25th to 75th percentile, where 2-OHNa dominated the main effect of the mixture. The WQS and BKMR models were adjusted for all covariates.ConclusionIncreased concentrations of urinary PAH metabolites are associated with cognitive decline in older adults, mainly on language ability, executive function, sustained attention, working memory, and information processing speed, with 2-OHNa playing a major effect.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3