Author:
Kavitha C.,Mani Vinodhini,Srividhya S. R.,Khalaf Osamah Ibrahim,Tavera Romero Carlos Andrés
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults. There is currently a lot of interest in applying machine learning to find out metabolic diseases like Alzheimer's and Diabetes that affect a large population of people around the world. Their incidence rates are increasing at an alarming rate every year. In Alzheimer's disease, the brain is affected by neurodegenerative changes. As our aging population increases, more and more individuals, their families, and healthcare will experience diseases that affect memory and functioning. These effects will be profound on the social, financial, and economic fronts. In its early stages, Alzheimer's disease is hard to predict. A treatment given at an early stage of AD is more effective, and it causes fewer minor damage than a treatment done at a later stage. Several techniques such as Decision Tree, Random Forest, Support Vector Machine, Gradient Boosting, and Voting classifiers have been employed to identify the best parameters for Alzheimer's disease prediction. Predictions of Alzheimer's disease are based on Open Access Series of Imaging Studies (OASIS) data, and performance is measured with parameters like Precision, Recall, Accuracy, and F1-score for ML models. The proposed classification scheme can be used by clinicians to make diagnoses of these diseases. It is highly beneficial to lower annual mortality rates of Alzheimer's disease in early diagnosis with these ML algorithms. The proposed work shows better results with the best validation average accuracy of 83% on the test data of AD. This test accuracy score is significantly higher in comparison with existing works.
Subject
Public Health, Environmental and Occupational Health
Reference37 articles.
1. Machine learning framework for implementing Alzheimer's disease;Sivakani;Int Conferen Commun Signal Process.,2020
2. Machine learning and deep learning approaches for brain disease diagnosis: principles and recent advances;Khan;IEEE Access.,2021
3. Studying the manifold structure of Alzheimer's disease: a deep learning approach using convolutional autoencoders;Martinez-Murcia;IEEE J Biomed Health Inform.,2020
4. “An efficient deep neural network binary classifier for alzheimer's disease classification,”;Prajapati;International Conference on Artificial Intelligence in Information and Communication (ICAIIC),2021
5. Deep learning approach for early detection of Alzheimer's disease;Helaly;Cogn Computing.,2021
Cited by
115 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献