Exosome- Machine Learning Integration in Biomedicine: Advancing Diagnosis and Biomarker Discovery

Author:

Ram Kumar Ram Mohan1

Affiliation:

1. Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India

Abstract

Exosomes, small extracellular vesicles (sEVs) secreted by various cell types, play crucial roles in intercellular communication and are increasingly recognized as valuable biomarkers for disease diagnosis and therapeutic targets. Meanwhile, machine learning (ML) techniques have revolutionized biomedical research by enabling the analysis of complex datasets and highly accurate prediction of disease outcomes. Exosomes, with their diverse cargo of proteins, nucleic acids, and lipids, offer a rich source of molecular information reflecting the physiological state of cells. Integrating exosome analysis with ML algorithms, including supervised and unsupervised learning techniques, allows for identifying disease-specific biomarkers and predicting disease outcomes based on exosome profiles. Integrating exosome biology with ML presents a promising avenue for advancing biomedical research and clinical practice. This review explores the intersection of exosome biology and ML in biomedicine, highlighting the importance of integrating these disciplines to advance our understanding of disease mechanisms and biomarker discovery.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3