Practice toward standardized performance testing of computer-aided detection algorithms for pulmonary nodule

Author:

Wang Hao,Tang Na,Zhang Chao,Hao Ye,Meng Xiangfeng,Li Jiage

Abstract

This study aimed at implementing practice to build a standardized protocol to test the performance of computer-aided detection (CAD) algorithms for pulmonary nodules. A test dataset was established according to a standardized procedure, including data collection, curation and annotation. Six types of pulmonary nodules were manually annotated as reference standard. Three specific rules to match algorithm output with reference standard were applied and compared. These rules included: (1) “center hit” [whether the center of algorithm highlighted region of interest (ROI) hit the ROI of reference standard]; (2) “center distance” (whether the distance between algorithm highlighted ROI center and reference standard center was below a certain threshold); (3) “area overlap” (whether the overlap between algorithm highlighted ROI and reference standard was above a certain threshold). Performance metrics were calculated and the results were compared among ten algorithms under test (AUTs). The test set currently consisted of CT sequences from 593 patients. Under “center hit” rule, the average recall rate, average precision, and average F1 score of ten algorithms under test were 54.68, 38.19, and 42.39%, respectively. Correspondingly, the results under “center distance” rule were 55.43, 38.69, and 42.96%, and the results under “area overlap” rule were 40.35, 27.75, and 31.13%. Among the six types of pulmonary nodules, the AUTs showed the highest miss rate for pure ground-glass nodules, with an average of 59.32%, followed by pleural nodules and solid nodules, with an average of 49.80 and 42.21%, respectively. The algorithm testing results changed along with specific matching methods adopted in the testing process. The AUTs showed uneven performance on different types of pulmonary nodules. This centralized testing protocol supports the comparison between algorithms with similar intended use, and helps evaluate algorithm performance.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3