Evaluation of an AI-Powered Lung Nodule Algorithm for Detection and 3D Segmentation of Primary Lung Tumors

Author:

Weikert Thomas1ORCID,Akinci D’Antonoli Tugba1ORCID,Bremerich Jens1ORCID,Stieltjes Bram1,Sommer Gregor1ORCID,Sauter Alexander W.1ORCID

Affiliation:

1. Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland

Abstract

Automated detection and segmentation is a prerequisite for the deployment of image-based secondary analyses, especially for lung tumors. However, currently only applications for lung nodules ≤3 cm exist. Therefore, we tested the performance of a fully automated AI-based lung nodule algorithm for detection and 3D segmentation of primary lung tumors in the context of tumor staging using the CT component of FDG-PET/CT and including all T-categories (T1–T4). FDG-PET/CTs of 320 patients with histologically confirmed lung cancer performed between 01/2010 and 06/2016 were selected. First, the main primary lung tumor within each scan was manually segmented using the CT component of the PET/CTs as reference. Second, the CT series were transferred to a platform with AI-based algorithms trained on chest CTs for detection and segmentation of lung nodules. Detection and segmentation performance were analyzed. Factors influencing detection rates were explored with binominal logistic regression and radiomic analysis. We also processed 94 PET/CTs negative for pulmonary nodules to investigate frequency and reasons of false-positive findings. The ratio of detected tumors was best in the T1-category (90.4%) and decreased continuously: T2 (70.8%), T3 (29.4%), and T4 (8.8%). Tumor contact with the pleura was a strong predictor of misdetection. Segmentation performance was excellent for T1 tumors (r = 0.908, p<0.001) and tumors without pleural contact (r = 0.971, p<0.001). Volumes of larger tumors were systematically underestimated. There were 0.41 false-positive findings per exam. The algorithm tested facilitates a reliable detection and 3D segmentation of T1/T2 lung tumors on FDG-PET/CTs. The detection and segmentation of more advanced lung tumors is currently imprecise due to the conception of the algorithm for lung nodules <3 cm. Future efforts should therefore focus on this collective to facilitate segmentation of all tumor types and sizes to bridge the gap between CAD applications for screening and staging of lung cancer.

Funder

CTI

Publisher

Hindawi Limited

Subject

Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3