Prediction of suicidal ideation among Chinese college students based on radial basis function neural network

Author:

Liao Shiyi,Wang Yang,Zhou Xiaonan,Zhao Qin,Li Xiaojing,Guo Wanjun,Ji Xiaoyi,Lv Qiuyue,Zhang Yunyang,Zhang Yamin,Deng Wei,Chen Ting,Li Tao,Qiu Peiyuan

Abstract

BackgroundSuicide is one of the leading causes of death for college students. The predictors of suicidal ideation among college students are inconsistent and few studies have systematically investigated psychological symptoms of college students to predict suicide. Therefore, this study aims to develop a suicidal ideation prediction model and explore important predictors of suicidal ideation among college students in China.MethodsWe recruited 1,500 college students of Sichuan University and followed up for 4 years. Demographic information, behavioral and psychological information of the participants were collected using computer-based questionnaires. The Radial Basis Function Neural Network (RBFNN) method was used to develop three suicidal ideation risk prediction models and to identify important predictive factors for suicidal ideation among college students.ResultsThe incidence of suicidal ideation among college students in the last 12 months ranged from 3.00 to 4.07%. The prediction accuracies of all the three models were over 91.7%. The area under curve scores were up to 0.96. Previous suicidal ideation and poor subjective sleep quality were the most robust predictors. Poor self-rated mental health has also been identified to be an important predictor. Paranoid symptom, internet addiction, poor self-rated physical health, poor self-rated overall health, emotional abuse, low average annual household income per person and heavy study pressure were potential predictors for suicidal ideation.ConclusionsThe study suggested that the RBFNN method was accurate in predicting suicidal ideation. And students who have ever had previous suicidal ideation and poor sleep quality should be paid consistent attention to.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3