Frequency and machine learning predictors of severe depressive symptoms and suicidal ideation among university students

Author:

Meda NicolaORCID,Pardini SusannaORCID,Rigobello Paolo,Visioli FrancescoORCID,Novara CaterinaORCID

Abstract

Abstract Aims Prospective studies on the mental health of university students highlighted a major concern. Specifically, young adults in academia are affected by markedly worse mental health status than their peers or adults in other vocations. This situation predisposes to exacerbated disability-adjusted life-years. Methods We enroled 1,388 students at the baseline, 557 of whom completed follow-up after 6 months, incorporating their demographic information and self-report questionnaires on depressive, anxiety and obsessive–compulsive symptoms. We applied multiple regression modelling to determine associations – at baseline – between demographic factors and self-reported mental health measures and supervised machine learning algorithms to predict the risk of poorer mental health at follow-up, by leveraging the demographic and clinical information collected at baseline. Results Approximately one out of five students reported severe depressive symptoms and/or suicidal ideation. An association of economic worry with depression was evidenced both at baseline (when high-frequency worry odds ratio = 3.11 [1.88–5.15]) and during follow-up. The random forest algorithm exhibited high accuracy in predicting the students who maintained well-being (balanced accuracy = 0.85) or absence of suicidal ideation but low accuracy for those whose symptoms worsened (balanced accuracy = 0.49). The most important features used for prediction were the cognitive and somatic symptoms of depression. However, while the negative predictive value of worsened symptoms after 6 months of enrolment was 0.89, the positive predictive value is basically null. Conclusions Students’ severe mental health problems reached worrying levels, and demographic factors were poor predictors of mental health outcomes. Further research including people with lived experience will be crucial to better assess students’ mental health needs and improve the predictive outcome for those most at risk of worsening symptoms.

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Public Health, Environmental and Occupational Health,Epidemiology

Reference77 articles.

1. Mental Health of College Students and Their Non–College-Attending Peers

2. Mental health of students and its development between 1994 and 2012

3. de Leeuw, E , Hox, J and Luiten, A (2018) International Nonresponse Trends across Countries and Years: An analysis of 36 years of Labour Force Survey data. Survey Insights: Methods from the Field. https://surveyinsights.org/?p=10452.

4. A questionnaire for the measurement of nonpathological worry

5. Examining factors impacting online survey response rates in educational research: Perceptions of graduate students;Saleh;Online Submission,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3