Exploring the intersection of obesity and gender in COVID-19 outcomes in hospitalized Mexican patients: a comparative analysis of risk profiles using unsupervised machine learning

Author:

Nezhadmoghadam Fahimeh,Tamez-Peña José Gerardo,Martinez-Ledesma Emmanuel

Abstract

IntroductionObesity and gender play a critical role in shaping the outcomes of COVID-19 disease. These two factors have a dynamic relationship with each other, as well as other risk factors, which hinders interpretation of how they influence severity and disease progression. This work aimed to study differences in COVID-19 disease outcomes through analysis of risk profiles stratified by gender and obesity status.MethodsThis study employed an unsupervised clustering analysis, using Mexico’s national COVID-19 hospitalization dataset, which contains demographic information and health outcomes of patients hospitalized due to COVID-19. Patients were segmented into four groups by obesity and gender, with participants’ attributes and clinical outcome data described for each. Then, Consensus and PAM clustering methods were used to identify distinct risk profiles based on underlying patient characteristics. Risk profile discovery was completed on 70% of records, with the remaining 30% available for validation.ResultsData from 88,536 hospitalized patients were analyzed. Obesity, regardless of gender, was linked with higher odds of hypertension, diabetes, cardiovascular diseases, pneumonia, and Intensive Care Unit (ICU) admissions. Men tended to have higher frequencies of ICU admissions and pneumonia and higher mortality rates than women. Within each of the four analysis groups (divided based on gender and obesity status), clustering analyses identified four to five distinct risk profiles. For example, among women with obesity, there were four profiles; those with a hypertensive profile were more likely to have pneumonia, and those with a diabetic profile were most likely to be admitted to the ICU.ConclusionOur analysis emphasizes the complex interplay between obesity, gender, and health outcomes in COVID-19 hospitalizations. The identified risk profiles highlight the need for personalized treatment strategies for COVID-19 patients and can assist in planning for patterns of deterioration in future waves of SARS-CoV-2 virus transmission. This research underscores the importance of tackling obesity as a major public health concern, given its interplay with many other health conditions, including infectious diseases such as COVID-19.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3