Statistical analysis, source apportionment, and toxicity of particulate- and gaseous-phase PAHs in the urban atmosphere

Author:

Singh Bhupendra Pratap,Zughaibi Torki A.,Alharthy Saif A.,Al-Asmari Ahmed I.,Rahman Shakilur

Abstract

IntroductionThe concentrations of particulate and gaseous Polycyclic Hydrocarbons Carbon (PAHs) were determined in the urban atmosphere of Delhi in different seasons (winter, summer, and monsoon).MethodologyThe samples were collected using instrument air metric (particulate phase) and charcoal tube (gaseous phase) and analyzed through Gas chromatography. The principal component and correlation were used to identify the sources of particulate and gaseous PAHs during different seasons.Results and discussionThe mean concentration of the sum of total PAHs (TPAHs) for particulate and gaseous phases at all the sites were found to be higher in the winter season (165.14 ± 50.44 ng/m3 and 65.73 ± 16.84 ng/m3) than in the summer season (134.08 ± 35.0 ng/m3 and 43.43 ± 9.59 ng/m3), whereas in the monsoon season the concentration was least (68.15 ± 18.25 ng/m3 and 37.63 1 13.62 ng/m3). The principal component analysis (PCA) results revealed that seasonal variations of PAHs accounted for over 86.9%, 84.5%, and 94.5% for the summer, monsoon, and winter seasons, respectively. The strong and positive correlation coefficients were observed between B(ghi)P and DahA (0.922), B(a)P and IcdP (0.857), and B(a)P and DahA (0.821), which indicated the common source emissions of PAHs. In addition to this, the correlation between Nap and Flu, Flu and Flt, B(a)P, and IcdP showed moderate to high correlation ranging from 0.68 to 0.75 for the particulate phase PAHs. The carcinogenic health risk values for gaseous and particulate phase PAHs at all sites were calculated to be 4.53 × 10−6, 2.36 × 10-5 for children, and 1.22 × 10−5, 6.35 × 10−5 for adults, respectively. The carcinogenic health risk for current results was found to be relatively higher than the prescribed standard of the Central Pollution Control Board, India (1.0 × 10−6).

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3