Impact of Atmospheric Conditions and Source Identification of Gaseous Polycyclic Aromatic Hydrocarbons (PAHs) during a Smoke Haze Period in Upper Southeast Asia

Author:

Tala Wittaya123,Kraisitnitikul Pavidarin12,Chantara Somporn13

Affiliation:

1. Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

2. Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand

3. Environmental Chemistry Research Laboratory (ECRL), Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

Gaseous polycyclic aromatic hydrocarbons were measured in northern Thailand. No previous studies have provided data on gaseous PAHs until now, so this study determined the gaseous PAHs during two sampling periods for comparison, and then they were used to assess the correlation with meteorological conditions, other pollutants, and their sources. The total concentrations of 8-PAHs (i.e., NAP, ACY, ACE, FLU, PHE, ANT, FLA, and PYR) were 125 ± 22 ng m−3 and 111 ± 21 ng m−3, with NAP being the most pronounced at 67 ± 18 ng m−3 and 56 ± 17 ng m−3, for morning and afternoon, respectively. High temperatures increase the concentrations of four-ring PAHs, whereas humidity and pressure increase the concentrations of two- and three-ring PAHs. Moreover, gaseous PAHs were estimated to contain more toxic derivatives such as nitro-PAH, which ranged from 0.02 ng m−3 (8-Nitrofluoranthene) to 10.46 ng m−3 (1-Nitronaphthalene). Therefore, they could be one of the causes of local people’s health problems that have not been reported previously. Strong correlations of gaseous PAHs with ozone indicated that photochemical oxidation influenced four-ring PAHs. According to the Pearson correlation, diagnostic ratios, and principal component analysis, mixed sources including coal combustion, biomass burning, and vehicle emissions were the main sources of these pollutants.

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3