A forced cough sound based pulmonary function assessment method by using machine learning

Author:

Xu Wenlong,He Guoqiang,Pan Chen,Shen Dan,Zhang Ning,Jiang Peirong,Liu Feng,Chen Jingjing

Abstract

Pulmonary function testing (PFT) has important clinical value for the early detection of lung diseases, assessment of the disease severity, causes identification of dyspnea, and monitoring of critical patients. However, traditional PFT can only be carried out in a hospital environment, and it is challenging to meet the needs for daily and frequent evaluation of chronic respiratory diseases. In this study, we propose a novel method for accurately assessing pulmonary function by analyzing recorded forced cough sounds by mobile device without time and location restrictions. In the experiment, 309 clips of cough sound segments were separated from 133 patients who underwent PFT by using Audacity software. There are 247 clips of training samples and 62 clips of testing samples. Totally 52 features were extracted from the dataset, and principal component analysis (PCA) was used for feature reduction. Combined with biological attributes, the normalized features were regressed by using machine learning models with pulmonary function parameters (i.e., FEV1, FVC, FEV1/FVC, FEV1%, and FVC%). And a 5-fold cross-validation was applied to evaluate the performance of the regression models. As described in the experimental result, the result of coefficient of determination (R2) indicates that the support vector regression (SVR) model performed best in assessing FVC (0.84), FEV1% (0.61), and FVC% (0.62) among these models. The gradient boosting regression (GBR) model performs best in evaluating FEV1 (0.86) and FEV1/FVC (0.54). The result confirmed that the proposed method was capable of accurately assessing pulmonary function with forced cough sound. Besides, the cough sound sampling by a smartphone made it possible to conduct sampling and assess pulmonary function frequently in the home environment.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3