A noval pulmonary function evaluation method based on ResNet50 + SVR model and cough

Author:

Xu Wenlong,He Guoqiang,Shen Dan,Xu Bingqiao,Jiang Peirong,Liu Feng,Lou Xiaomin,Guo Lingling,Ma Li

Abstract

AbstractTraditionally, the clinical evaluation of respiratory diseases was pulmonary function testing, which can be used for the detection of severity and prognosis through pulmonary function parameters. However, this method is limited by the complex process, which is impossible for patients to monitor daily. In order to evaluate pulmonary function parameters conveniently with less time and location restrictions, cough sound is the substitute parameter. In this paper, 371 cough sounds segments from 150 individuals were separated into 309 and 62 as the training and test samples. Short-time Fourier transform (STFT) was applied to transform cough sound into spectrogram, and ResNet50 model was used to extract 2048-dimensional features. Through support vector regression (SVR) model with biological attributes, the data were regressed with pulmonary function parameters, FEV1, FEV1%, FEV1/FVC, FVC, FVC%, and the performance of this models was evaluated with fivefold cross-validation. Combines with deep learning and machine learning technologies, the better results in the case of small samples were achieved. Using the coefficient of determination (R2), the ResNet50 + SVR model shows best performance in five basic pulmonary function parameters evaluation as FEV1(0.94), FEV1%(0.84), FEV1/FVC(0.68), FVC(0.92), and FVC%(0.72). This ResNet50 + SVR hybrid model shows excellent evaluation of pulmonary function parameters during coughing, making it possible to realize a simple and rapid evaluation for pneumonia patients. The technology implemented in this paper is beneficial in judge the patient's condition, realize early screening of respiratory diseases, evaluate postoperative disease changes and detect respiratory infectious diseases without time and location restrictions.

Funder

Natural Science Foundation of China

Key R&D projects of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3