Rapid screening of chemicals for their potential to cause specific toxidromes

Author:

Liu Ruifeng,AbdulHameed Mohamed Diwan M.,Xu Zhen,Clancy Benjamin,Desai Valmik,Wallqvist Anders

Abstract

Toxidromes constitute patterns of symptoms and signs caused by specific toxic effects that guide emergency treatments. Computational identification of chemicals that cause different toxidromes allows us to rapidly screen novel compounds and compound classes as to their potential toxicity. The aim of the current study was to create a computational toolset that can map chemicals to their potential toxidromes. Hence, we evaluated the performance of a state-of-the-art deep learning method—the recently developed communicative message passing neural network (CMPNN)—for its ability to overcome the use of small datasets for training deep learning models. Our results indicated that multi-task training—a technique known for its ability to use multiple small datasets to train conventional deep neural networks—works equally well with CMPNN. We also showed that CMPNN-based ensemble learning results in more reliable predictions than those obtained using a single CMPNN model. In addition, we showed that the standard deviations of individual model predictions from an ensemble of CMPNN models correlated with the errors of ensemble predictions and could be used to estimate the reliability of ensemble predictions. For toxidromes that do not have well-defined molecular mechanisms or sufficient data to train a deep learning model, we used the similarity ensemble approach to develop molecular structural similarity-based toxidrome models. We made the toolset developed in this study publicly accessible via a web user interface at https://toxidrome.bhsai.org/.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3